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J. Phys. A: Math. Gen. 14 (1981) 1383-1397. Printed in Great Britain 

Non-linear dynamics of the fermion-boson model: 
interference between revivals and the transition to 
irregularity 

€1-1 Yoo, J J Sanchez-Mondragont and J H Eberly 
Department of Physics and Astronomy, University of Rochester, Rochester, NY 14627, 
USA 

Received 7 November 1980 

Abstract. We extend recent studies of the quantised fermion-boson model. Parallel 
numeric and approximate analytic advances allow greater understanding of the ‘collapse’ 
regions between successive ‘revivals’ in the fermion energy evolution. We give an estimate 
of the time for the onset of continuous irregularity as a function of the average boson 
number. 

1. Introduction 

The Hamiltonian given in equation (1.1) is an extremely idealised model version of 
realistic Hamiltonians governing physical phenomena in various fields. 

12 = 4hw& + hh (&+a^ +a^’&-) + hwa ’̂a .̂ (1.1) 

For example, if the ‘boson’ operators 6’ and a  ̂ create and destroy photons and the 
‘fermion’ operators ( j 3 ,  &+, &- represent a two-state atom or molecule, then I? is known 
in quantum optics as the Jaynes-Cummings Hamiltonian (Jaynes and Cummings 1963, 
see also Jaynes 1958). There are analogues in spin-phonon resonance and quantum 
field theory (the static Lee model). Basically I? can be said to describe any situation in 
which the absorption or emission of ‘a ’ quanta causes the raising or lowering of the state 
of the ‘v’ system. 

Because of the mixture of ‘boson’ and ‘fermion’ degrees of freedom in 12, the 
associated dynamical problem is apparently essentially non-linear. Nevertheless, the 
model has commanded attention because it is both quantum mechanical and exactly 
solvable. That is, the exact eigenvalues and eigenstates of I? have been long known 
(Jaynes 1958). Despite this, the dynamical behaviour of every operator in I? has 
remained practically unknown (both qualitatively and quantitatively) until recently, 
except in specially restricted circumstances. Cummings (1965) first pointed out the 
importance of studies of the operator dynamics of the model under the assumption of an 
initially ‘coherent’ boson state, and it is in the case of a strongly excited initial coherent 
state that some progress has recently been made. 

It has been shown (Eberly et a1 1980) both numerically and approximately analy- 
tically that the fermion ‘energy’ or ‘spin projection’ signal, i.e. the expectation of the 

t Mary Street Jenkins Foundation Fellow. 

0305-4470/81/061383 -t 15$01.50 @ 1981 The Institute of Physics 1383 



1384 H-I Yoo, J J Sanchez-Mondragon and J H Eberly 

operator &,(t), undergoes sinusoidal oscillation for a time of the order of A- ' ,  and that 
these oscillations then 'collapse' to a value (&,(t))  = 0. After a time long compared with 
A -' periodic 'revivals', packets of finite (&( t ) )  oscillation, subsequently occur. These 
spin signal revivals (which are not PoincarC recurrences) become less complete and 
begin to broaden, eventually overlapping each other at still longer times. These 
features are shown in figure 1. 

- 0.51 

- 1 . o t .  ' " " " ~ " ' " " " . ' " " " " " " ' " ' " ' ' "  
3n 4n 5n 671 

T 

Figure 1.-The inversion signal w, , ( t )  = ( & ( I ) ) / ( c ? ~ ( O ) )  as a function of the scaled time 
T = ht/2J?i when wo = w. (63(0))  is taken to be - 1. Average boson number E = 40. The 
time region shown in this figure is 0 T s 67i. 

In the regions of revival overlap the envelope of the spin signal traces an irregular, 
quasi-chaotic curve. In this paper we undertake a re-examination of the time depen- 
dence of ($,(t)) in this domain of irregularity. A systematic saddle point analysis of an 
approximate integral representation of (&,(t)) is developed. It is found that there is a 
one-to-one correspondence between saddle points and signal revivals. This approach 
reveals that each revival packet of spin oscillations can be assigned its own oscillation 
frequency and leads to the prediction of beat phenomena in the regions of collapse 
between revivals. We estimate, as a function of average boson number, the time for the 
onset of beats and the time after which the beats degenerate into apparently continuous 
irregularity. These estimates are compared with the new numerical results valid for 
very long times. 

Before proceeding to Q 2, we briefly review the derivation of the expression for the 
spin signal. Our system consists of one two-level spin and a single mode of a boson field 
which interact with each other via the Hamiltonian given above in (1.1). In this 
Hamiltonian (Allen and Eberly 1975) &+=$(&I+i&2) and 6, ( j  = 1 , 2 ,  3) are Pauli 
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matrices; and â  and â ’ are annihilation and creation operators of bosons with energy 
hw. The detuning parameter A is defined as the difference between the spin and boson 
field mode frequencies 

A s w 0 - w  (1.2) 
To indicate the initial spin state we use the letter m ;  e.g. m = 1 ( m  = -1) implies the 

spin is in the upper (lower) state. We assume the bosons are in a perfectly coherent state 
la) at t = 0. Then the Heisenberg equation of motion for the operator & ( t )  leads to the 
following txpression (Cummings 1965, Stenholm 1973, Meystre et a f  1975, von 
Foerster 1975) for Wm(t) ,  the spin projection or spin ‘inversion’ (positive projection 
corresponding to an excited or ‘inverted’ spin) 

Wm(t)=(a,  ml&(t)la, m )  

= (rnl&3(0)lm)wm(t) (1.3) 
where w,(t) is the ratio of inversion to initial inversion 

a3 

w m ( t )  = 1 P ( n ,  laI2)[A2/s2?Jn)+(1 -A’/iI:(n)) cos(s2,,(n)t)]. (1.4) 

We shall call w m ( t )  the inversion signal from now on. Here the oscillation frequency 
n m ( n )  is defined by 

n = O  

iI?n(n) = A’+ 4h2[n  + i ( m  + 1)] (1.5) 
and the weight function P ( n ,  la1’) is Poissonian 

P ( n ,  / a  j 2 )  = exp(- la ]’)la )”*/n !. 

2. Forinulation of the saddle point approach 

We are interested in the strong boson excitation case, so we evaluate equation (1.4) in 
the limit la/’= f i  >> 1. First we separate w,(t) of equation (1.4) into two parts 

w m ( t )  = M.”I + W m z ( t )  (2.1) 
where 

30 

wml  = P(n,  E ) A 2 / i I i ( n )  
n=O 

(2 .2a)  

and 
m 

w m Z ( f )  = 1 P(n,  E ) ( l  -A2/s2;?,(n)) cos(fi , , (n)t) .  (2.2b) 

The evaluation of wml  is straightforward, using the sharp peak of P ( n ,  E )  at n = E, and 
we obtain the result 

n = O  

w,1 = A2/SZi,(E). (2.3) 
The evaluation of wm2(t)  can be obtained as follows. We introduce y 2  = n/E and 

rewrite (2.2b) as an integral: 

(2.4) 
2n 

w , , , ~ ( t )  = (-1 Re jOm e x p W  y ; t ) ) (1-  A’/n:(Ey dy. 
7r 
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The weight factor P(n,  i i )  = e-”ii”/n ! has a peak at n = f i  with a dispersion law 
(2- ii2)’/’ = 4;. Since ii >> 1 and the main part of the summation is in the range 
between ii - JZ and ii + &, we have used Stirling’s formula for n !. The phase function 
is given by 

(2 .5 )  

The saddle points y o  of f (  y ; t )  are given by - f l  a = o  
a y  Y ’ Y O  

and this leads to the following equation 
2 1 / 2  

( yi + 8,) 

8 ;  = [A2+2A2(m + 1)]/4A2fi. 

In y o  = i ht/2& 
where 

The saddle points yo ,  which are solutions of equation (2.6), are infinite in number. 
However, it is shown in the appendix that for any given time t only those saddle points 
which have a norm close to unity ( / y o /  - 1) give significant contributions and that the 
contributions from the remaining saddle points are negligible. 

In the appendix we explain the details of our saddle point analysis. The result is that, 
in terms of the scaled time r 

r = A t / 2 J Z  (2.8) 

and for the simplest case, A = 0 and m = - 1, we can express the inversion signal as a sum 
of contributions, one from each saddle point 

(2.9) 

Here f is given in (2.5), with A = 0 and m = - 1 ; - 2a ( y o )  is the angle of steepest descent 
at Y O  

- 2a ( y o )  = tan-](.r) (2.10) 

and p and (o are the amplitude and phase of y o  

y o = p  2. (2.11) 

We find that the revivals occur at times r = k r ,  and that the kth saddle point? 
dominates the sum in equation (2.9) when 7 = kr. It is useful to define a local time & k  

E k  E 7 -- k r  (2.12) 

associated with the kth saddle point when r is in the neighbourhood of kr. Then the 
inversion signal (2.9) can be rewritten 

where 
U!:) = [ ( l + l n ~ ) ~ + ( P ’ ] - ~ ’ ~ ~ ~ p  ( - * ( y o ;  r))coscp(y0;  (2.14) 

f See the explanation below (A.2b) in the appendix, for the labelling of the saddle points. 
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Here, yo on the right-hand side of (2.14) is the kth saddle point at time 7, and &k is the 
corresponding local time. We shall call U:’ the kth revival signal. 

Finally, we can give explicit expressions for the individual revival signals in terms of 

(2.15) 

k and & k :  

2 -114 
U : ’ ( & k ) = ( l + T  ) exp(-*k(&k)) cos @ k ( & k )  

(2.16) 

(2.17) 

(2.18) 1 
f f k  = -2  tan-’(.r). 

Here we have eliminated a factor (-- 1lk from @ k ( & k )  since.cos is an even function. 

original time scale the kth revival time f O k  and its local time Sk  are given by 
Note that we are working with the scaled time T defined by equation (2.9) and in the 

(2.19) 

As a function of time r, the envelope of U:) ( & k )  is Gaussian in form, centred at 7 = kr 
with its width 

( 2 . 2 0 ~ )  

and its maximum height 

(2.20h) 

Figure 2 shows the envelopes of U(k) that contribute to w,(f) . .  The U:) are well 
separated from each other for k which satisfy the inequality k < &/2. In other words, 
each revival signal is well isolated from the others in the time region where T < $r&. 

2 -114 h k = [ l f ( k T )  ] . 

T T 

Figure 2. The superposition of the envelopes of several U:). The peak around T = krr 
( k  = 0, 1 . . .) corresponds to the kth revival signals U:). For T smaller than the critical 
value T~~ defined in equation (2.21) each revival signal is well separated from its neighbours. 
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It is useful, for later considerations, to introduce two critical times T~~ and T~~ defined 
by 

TC1 3 ;IT& (2 .21 )  

rc2 = 4rc ,  = 2 T h .  (2 .22 )  

When T exceeds rcl, a neighbouring pair of revival signals starts overlapping in their 
tails. This overlapping becomes more prominent as T gets larger and after T = T~~ not 
only that pair but also second nearest or further neighbours participate in the inversion 
signal. We shall show in § 3 that an interference between adjacent revival signals does 
occur in the region of overlap. 

Finally, we lift the restriction to A = 0, and give the results for small A corresponding 
to those given above. First we go back to equation (2 .6 )  

If ~ ( 1 +  = kIr, then y o  = exp[i( - l ) k k ~ ]  is a solution of equation (2 .6 ) .  In the 
case A = 0, we know that yo  = p ei' does not change much in the range S r for 
kIr >> 1 .  We may expect the characteristic features not to change significantly from the 
case 8,  = 0 to the case S', << 1 so we replace y o 2  in the root of equation (2 .6)  by unity 

(2 .23 )  

Comparing equation (2 .23 )  with equation (A . l )  we see immediately that the effect 

2 -1 /2  
yo In y o  = iT(1+ 8,) . 

of small detunings is expressible in terms of a 'rescaling' of time 
2 -1/2 T * ' ? E T ( 1 + 6 , )  . 

Hence it is a straightforward matter to extend the procedure of the previous section to 
the small S, case. One obtains the results: 

(2 .24 )  

(2 .26 )  

(2 .27)  

(2 .28 )  

where S, and S are defined by 

S i  = [A2 + 4A '$(m + 1) ] /4h2A 

and 

S 2  = A2/4A 'NAm.  (2 .29 )  

Here Nlim is the 'excitation number' of the initial averaged boson number E for the 
coupled system 

N -  nm = E + $ ( m + l )  (2 .30)  
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and E k  in the above is the ‘rescaled’ local time defined by 

;=?(I + & - 1 ’ 2 =  k r  4- Elk. (2.31) 

Correspondingly, actual time t can be separated into two parts t = f 0 , k  + sk, t0,k being 
the time when the kth saddle point passes the p = 1 line and sk being kth local time 
measured from 

tO,k = (1 + 82)1/2 2A J K  krr (2.32) 

Then the kth revival time t0.k is given by 

(2.33) 

In equation (2.27) the common factor ( -  l)k has again been eliminated from @k. 

The effect of small detuning can be seen to have three aspects: 
(i) non-zero time average of w,(t), 
(ii) decrease of height of envelope of revival signal and 
(iii) delay of revival time by the factor (1 + ~3’)~’~.  

The initial spin state also affects the revival time, and the width and phase of the revival 
signals through Nn,.  

3. Interference between revival signals 

As mentioned below equation (2.22), Q 2, two adjacent revival signals overlap each 
other when T is in the region T,,<T<T,,. The phase of each revival signal has a 
distinctive time dependence, as seen in equation (2.27). Therefore, we may expect to 
see an interference phenomenon in the overlapped region. For simplicity we consider 
the case of A = 0 and m = -1. The frequency of the kth revival signal at local time &k, 
Wk(&k), can be calculated from equation (2.17) 

(3.1) 

Equation (3.1) shows that W k  depends on both k and &k. Under the condition f i  >> 1 the 
third term, dak/dgk, can be neglected to simplify our discussion. 

At  the region around T = (k 1 - 3 ) ~  where T , ~  < 7 < 7c2 there coexist the kth and the 
(k + 1)th revival signals with roughly the same amplitudes. Therefore, in this region the 
formation of beats will be expected in the inversion due to the frequency difference of 
these two revival signals. Let 

7 = (k + i)rr + p ; (3.2) 

&k=;T+P  and & k + l  = -ir + p. (3.3) 

then the kth and the ( k  + 1)th local times, & k  and & k + l  respectively, are given by 

The beat frequency wbeat(P) and the frequency of basic oscillation wOs,(p)  are given by 
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2k + 1 +2P/.rr _- 
@beat@) k(k + 1) 

When P K &r, the ratio of w,,, to @beat is given by 

w,,, 4 k ( k + 1 )  

(3.6) 

(3.7) 

(3.8) 

Equation (3.8) gives quite good quantitative agreement with new results obtained 
from computer summation of equation (1.4). As an example, in figure 3 we show the 
beats in the inversion between the kth and the (k + 1)th revivals for J A  = 7.5,  found by 
numerical summation. The number of oscillations within each beat envelope, near the 
centre of the beat regions, agrees very well with the ratio predicted by equation (3.8). 

Figure 3. The inversion signal obtained from computer summation of equation (1.4)~ The 
time regions shown in the figure are the regions between successive revivals, beginning with 
the fourth, which is the case for which the two adjacent revival signals just start to overlap in 
their tails, for the given value (A)"* = 7.5. (A  = 0 and m = -1.) 

Furthermore, in figure 4 we show the inversion computed from the exact sum (1.4) 
and computed from the superposition (2.13) and the difference between these two in 
the time regions ( a ,  67r S T G 77r and ( b )  187r L 7 L 1 9 ~  for A = 40 under the conditions 
A = 0 and m = -1. The inversion signal in the range ( a )  is made essentially by two 
revivals U@' and U"'. On the other hand, the one in the range ( b )  consists of six or 
seven U'k'. As is clearly seen in figure 4, the agreement between the two expressions 
(1.4) and (2.13) of the inversion for 8, = 0 is remarkably good, and this agreement 
seems to continue at even longer time. (We have checked up to four hundred revival 
times, i.e. T = 4007r, and found no sign of deviation froin this tendency.) Moreover. it 
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1 .o 1 .o 

0 0 

0.5 0.5 

0 0 

-0.5 -0.5 

L .  I . , . , .  8 . . . ' . & . ' . ' .  4 4 
671 6.51~ IX 18n 1 8 . 5 ~  191-1 

Figure 4. The inversion signal obtained from computer summation for 8, = 0 (i.e. A = 0 and 
m = -1). The time interval is appropriate to show the transition from beating between 
revivals to apparently continuous irregularity. The average boson number is A = 40. The 
time regions are (a)  677 < T < 777 and ( b )  1877 < T < 1977. The graphs indicate the inversion 
signal computed from: A the exact sum (1.4) and B the superposition of revival signals 
(2.27). Graph C is the difference between these two. 

has been confirmed by numerical comparison that the difference between (1.4) and 
(2.13) becomes smaller as E increases, as is expected. A brief comparison of figures 4 
and 5 will give a reasonably good impression of this effect. 

4. Conclusion and discussion 

We have shown that w,(t), the ratio of inversion to initial inversion, is expressed as a 
superposition of revival signals, U',"' ( E k )  when E >> 1. As a function of time, the 
envelope of U:) takes its maximum value hk when 7 = krr. The time separation 

0 

1.0 

0 

0 

0 2n 4n 

Figure 5. The inversion signal for ii = 3 for 8, = 0. The time range is 0 s ~i 4.n. The 
graphs labelled A, B and C have the same meaning as those in figure 4. 
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between succeeding revivals UC+l) and U?), namely (k + 1) r  - k r  = T,  does not 
depend on k. In this sense the inversion signal is periodic. This is intimately related 
with the discreteness of the constituent oscillators in w,, i.e. the left-hand side of 
equation (1.4). This periodicity of revivals, however, will be concealed after a certain 
time, after T = r,,, because of the overlapping of adjacent revivals. 

The width of the kth revival signal U?’ is proportional to kT when (krr)’>> 1 
(equation (2.20a)). This fact may be related to the motion of the kth saddle point along 
its branch: when T = kT this saddle point is on the p = 1 line. Using equations (A.17) 
and (A.6) we can calculate the ‘speed’ v k  of the saddle point when it crosses the p = 1 
line 

The ‘speed‘ t’k is inversely proportional to k r .  On the other hand, the exponent in 
equation (A.12) is approximately a function of p only, since cp does not change so much 
compared with the change of p when p = 1. Since this exponent has its minimum at 
p = 1 and grows larger when / p  - 11 increases, as mentioned below equation (A.16), a 
revival signal is appreciable only when the corresponding saddle point is in the range 

1 - A p  G p  S 1 +Ap. 

Here Ap can be evaluated by the conditio11 

= fi{l+ (1 * Ap)’[2 ln(1 f Ap) - 111 = 1 

and this gives 

1 
Ap =- 

2&‘ 

(4.2) 

(4.3) 

(4.4) 

The time interval during which the kth saddle point stays in the region (4.2) is given by 

AT;  L- (2hp)lvk = krr/&. (4.5) 

This A T ;  coincides with the width A T k  of the kth revival signal given by equation ( 2 . 2 0 ~ )  
except for a factor J2. 

The number of saddle points found in the range (4.2) at a given time T increases as T 

becomes large, and these saddle points contribute to the inversion signal simultaneously 
with their distinctive phases. In the time range T,, 6 T 6 T ~ ~ ,  two (or at most three) 
saddle points stay in the range (4.2) for a given time and clear beats will be observed in 
the region just between two adjacent revival signals. This regular beat phenomenon, 
however, will become obscure after a time T -‘I T ~ * ,  and regularity will be replaced by 
apparent irregularity of the envelope of the inversion signal as time goes on, as is shown 
in figure 4. This irregularity is nothing but a result of a superposition of many revival 
signals, each of which has a distinctive time-dependent frequency. 

An analytical expression for w,(t) is also given in the paper of Narozhny et a1 
(1980). Their method is basically the same as ours, but their treatment is essentially a 
first-order ‘perturbation’ in the parameter E k .  Then w,(t) is written as a single function 
just like one of the U‘k’ here, but with phase and exponent periodic in time. This 
periodicity was an ad hoc addition to the theory, designed to allow the contribution 
from a single saddle point to govern w,(t) at all times. On the other hand, in this paper 
we treat all the saddle points equally. As a result w,(t) is written as a superposition of 
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all U‘k’,  where the perturbation is carried out up to the second order of & k .  It turns out 
that the second-order term of &k in the phase @ k  is essential to explain the interference 
effect between revival signals, an effect missed in the earlier analysis. We see now that 
the validity of the expression for w,(t) in Narozhny et a1 (1980) is restricted to the time 
region 0 s T S T ~ ~ .  

When T is sufficiently larger than T ~ ~ ,  we can consider a frequency distribution 
associated with the superposed U ( k )  at time T,  

g ( w ;  T ) a  1 (magnitude of u‘~’ at T ) X S ( W - W ~ ( & ~ ) )  (4.6) 
k 

where o k ( & k )  is given by (3.1). This g(w ; 7) may represent characteristic features of the 
regularity-irregularity problem of the inversion signal. g(o ; 7) is centred at w = 4fi 
with its width Am =4&-. The centre and the width are nearly constant in time, 
though the w k ( & k )  themselves are time dependent. The number of w k  which are 
significant in g(w ; T )  is finite but increases as 7 increases. In this sense we may say the 
‘degree’ of irregularity of the inversion signal grows as time goes by. 

Finally, we should mention that the step (2.2b) -$ (2.4), i.e. the replacement of the 
original summation by an integral, is not valid when t is not small, because of the phase 
part exp(i0, (n)t). Nevertheless, based on the extremely good agreement between the 
original summation form (1.4) and our result (2.13), we may claim that the saddle point 
method brings back the phase information which was lost by the step from (2.2b) to 
(2.4). 
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Appendix 

We consider the simplest case where A = 0 and m = -1. In this case 8, = 0 and equation 
(2.6) becomes 

y o  In y o  = iT (A.1) 

where T is a scaled time defined by 

r ~ t / 2  JZ. 
The solutions y o  of equation (A.l)  are complex in general, and if we write 

y o  = p ei‘ (2.11) 

then equation (A. 1) reduces to two coupled equations 

p In p = T sin cp 

p = T COS C p / C p .  

(A.2a) 

(A.2b) 

Figure 6 shows the graphs of the two functions p = exp(cp tan cp) and p = T cos cplcp, 
which are equivalent to the set of equations (A.2a) and (A.2b), for T = 1, 271- and 3 r .  
The graph of the function p = exp(cp tan cp) consists of an infinite number of branches 
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P 

Figure 6.  Figure 6. Solution curves for p = exp(cp tan cp) and p = T(COS pip) for three 
different values of T :  T = 1, 2rr and 3rr. The intersections of the solution curves give the 
locations of the saddle points yo for these values of T. 

which are disconnected from each other. We shall call the kth branch the one which 
passes the point ( p  = 1, cp = ( -  l)kk.rr) where k is a non-negative integer. All the saddle 
points are on these branches. We shall also call the kth saddle point the one which i s  on 
the kth branch. As seen in figure 6 ,  each saddle point moves upward (in the direction of 
increasing p )  along its branch as time goes on, starting from p = 0, except for the zeroth 
saddle point which starts at p = 1 at time T = 0. 

Now we separate time t into two parts 

t = t o + s  (A.3) 

where to is some fixed time and s is the time measured from to. Correspondingly we 
write T as a sum of two parts 

T = T o f &  (19.4) 

where T~ and E are given by 

As and E =--. A to  
70 = ---= 

2 Jii 2 Jii 
(A.5) 

We call E (or s) local time. We use E as an expansion parameter and write expansions 
for p and cp as 

(A.6) 

(A.7) 

Substitution of equations (A.4), (A.6) and (A.7) into equations (A.2a) and (A.2b) gives 
the following expressions for the first several coefficients 

Po = To  COS cpo/cpo po In po = T~ sin p0 (A.8a) 
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Con 

( A . 8 6 )  

(A&) 

where 
2 A = 2 T i [ ( P o  +( I  +In P0)2]3 

Given T ~ ,  equations ( A . ~ u ) ,  ( A . 8 b )  and (A&) determine thezeroth, the first-order and 
the second-order solutions of all the saddle points respectively. 

For the case of A = 0 and m = -1 equations (2 .4 )  and ( 2 . 5 )  become 

(A.  IO) 

and - 2 a  ( y o )  is the angle of steepest descent at the point y o  and is given by 

- 2a ( y o )  2: tan-’(T). (2.10) 

The summation in equation ( A . 9 )  goes over all the saddle points y o  at time 7, and it 
indicates that w,(t) is a superposition of the contributions of the individual saddle 
points. 

We separate the exponent in equation ( A . 9 )  into real and imaginary parts 

where 

* ( y o ;  T )  = f i ( 1  +2p2  In p - p 2  COS 240) 

and 

CP( y o ;  = fip2(240 i- sin 240) + a ( y o ) .  

(A. 12) 

(A.13) 

Here we have used equations (A .2 )  to simplify the expressions of 9 and CP. The 
imaginary part CP gives the phase of the revival signal of the atomic inversion, arid 
equation ( A . 9 )  becomes 

w,( t )=C [ c ~ ~ i - ( 1 + 1 n p ) ~ ] - ” ~ e x p ( - ~ ( y ~ ;  .r))cos@(yo; T I .  (2.9) 
Y O  

If we make a Taylor expansion of V? and CP in terms of e, we reach the following 
expressions by using equations ( A . 6 )  and ( A . 7 ) :  
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(A.14) 

(A.15) 

Since any saddle point y o  can be labelled by a non-negative integer k, we can write 
equation (2.9) as 

CO 

w m ( t ) =  1 U',k'(&k) (2.13) 
k =O 

and 
U ' , k ' ( ~ ~ ) = [ p ~ + ( l + l n p ) ~ ] - ~ ' ~ e x p ( - U ( y ~ ;  7 ) )  cos@(yo; T ) .  (A.16) 

Here y o  in the right-hand side of equation (A.16) is the kth saddle point at time P and & k  
is the local time for this branch. We name U',"' the kth revival signal. On the other 
hand, it can be shown that for P 5 0 the exponent U( y o ;  T )  given by equation (A.12), 
when it is considered as a function of p, decreases monotonically for p < 1, increases 
monotonically for p > 1 and takes its minimum value zero at p = 1: *(yo; 7)Imin = 0. 
Since p = 1 corresponds to P = krr if y o  in 'P( y o ;  T )  is the kth saddle point, this analysis 
suggests that the proper choice of P~ is krr for the kth saddle point. Then the local time 
for this saddle point, &k, is given by 

& k  = T - k n  (2.12) 

i.e. Ek  is the (kth) local time measured from the instant when the kth saddle point passes 
the p = 1 line (in figure 6).  With the choice P~ = krr for the kth saddle point equation 
(A.8) gives 

po= 1 p o  = ( -  l)kkrr zeroth order 

first order krr (-Ilk 
1 + (krr)2 p1= l+(krr) '  p1= (A.17) 

The radius of convergence of expansions (A.6) and (A.7) depends on P~ and for 
k b 2, l&kj  may well be taken up to rr. The larger the value of k, the larger the radius of 
convergence. 



Non-linear dynamics of the fermion-boson model 1397 

Substitution of equation (A.17) into equations (A. 14) and (A.15) gives expressions 
for the exponent '4' and phase @which belong to U:) in terms of &k and k. Those are 
given by equations (2.16) and (2.17). 
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